Closing Thurs: HW 10.2 Closing Tues: HW 10.3, 11.1&2(part 1)

10.3 Curve Sketching Summary Local and Global Max/Min

Entry Task: Consider

$$f(x) = x^3 - \frac{9}{2}x^2 - 12x + 10$$

- 1. Find all critical values.
- Plug the critical values into the 2nd derivative. What can you conclude?
- 3. Draw the 1st and 2nd deriv. analysis number lines.

Summary

For any question about "increasing, decreasing, local max/min", identify the function in question, y = f(x), then:

Step 1: Solve f'(x) = 0

Step 2:

(option 1): 1st Deriv. Test Draw 1st deriv. analysis number line. Make appropriate conclusions.

(option 2): 2nd Deriv. Test Plug critical numbers into 2nd deriv.

- $f'(a) = 0, f''(a) > 0 \Rightarrow \text{local min}$
- $f'(a) = 0, f''(a) < 0 \Rightarrow \text{local max}$

For any question about "concave up/down or inflection points", identify the function in question, y = f(x), then:

Step 1: Solve f''(x) = 0

Step 2:

Draw 2st deriv. analysis number line. Make appropriate conclusions.

Global Max/Min:

Given y = f(x) and an interval $a \le x \le b$

The **global maximum** (or *absolute max*) of f(x) on the interval is the highest overall y-value on that interval.

The **global minimum** (or *absolute min*) of f(x) on the interval is the highest overall y-value on that interval

Key (awesome) Observation (Extreme Value Thm)

The global max/min can only occur at:

a. critical values

OR

b.endpoints.

For any question about "global max/min", identify the function and interval in question, y = f(x) and $a \le x \le b$ then:

Step 1: Solve f'(x) = 0

Step 2:

- a. Plug the critical values into the original function.
- b. Plug the endpoints into the original function.

At the end of step 2:

The biggest output is the global max. The smallest output is the global min. *Example (same function from entry task)*:

On the interval $-2 \le x \le 10$, find the global max and min of

$$f(x) = x^3 - \frac{9}{2}x^2 - 12x + 10$$

Example (from HW 10.3/10):

The total revenue (in thousand dollars) for selling q thousand Framits is given by

$$TR(q) = \frac{1}{6}q^4 - \frac{31}{6}q^3 + 55q^2 + 200q$$

Part (c) Find the global max and global min of marginal revenue over the interval q = 0to q = 12. Example: (like the last problem in HW) Given $g(x) = \frac{1}{4}x^2 - 4x + 25$ and $S(x) = \frac{g(x)}{x}$

If x is between 1 and 20, what is the smallest possible value of S(x)?

Example: (like problems 5-9 of HW)

Given the monthly average cost and price for producing and selling *q* items:

$$AC(q) = \frac{36000}{q} + 100 + q$$
$$p = 1700$$

If production is limited to 400 items per month, what quantity maximizes profit?