Closing Thurs: HW 10.2
Closing Tues: HW 10.3, 11.1\&2(part 1)

10.3 Curve Sketching Summary

 Local and Global Max/MinEntry Task: Consider

$$
f(x)=x^{3}-\frac{9}{2} x^{2}-12 x+10
$$

1. Find all critical values.
2. Plug the critical values into the $2^{\text {nd }}$ derivative. What can you conclude?
3. Draw the $1^{\text {st }}$ and $2^{\text {nd }}$ deriv. analysis number lines.

Summary

For any question about "increasing, decreasing, local max/min", identify the function in question, $y=f(x)$, then:

Step 1: Solve $f^{\prime}(x)=0$

Step 2:

(option 1): $1^{\text {st }}$ Deriv. Test
Draw $1^{\text {st }}$ deriv. analysis number line.
Make appropriate conclusions.
(option 2): $2^{\text {nd }}$ Deriv. Test
Plug critical numbers into $2^{\text {nd }}$ deriv.

- $f^{\prime}(a)=0, f^{\prime \prime}(a)>0 \Rightarrow$ local min
- $f^{\prime}(a)=0, f^{\prime \prime}(a)<0 \Rightarrow$ local max

For any question about "concave up/down or inflection points", identify the function in question, $y=f(x)$, then:

Step 1: Solve $f^{\prime \prime}(x)=0$

Step 2:

Draw $2^{\text {st }}$ deriv. analysis number line.
Make appropriate conclusions.

Global Max/Min:

Given $y=f(x)$ and an interval $a \leq x \leq b$
The global maximum (or absolute max) of $f(x)$ on the interval is the highest overall y-value on that interval.

The global minimum (or absolute min) of $f(x)$ on the interval is the highest overall y-value on that interval

Key (awesome) Observation

 (Extreme Value Thm)The global max/min can only occur at:
a. critical values

OR
b.endpoints.

For any question about "global max/min", identify the function and interval in question, $y=f(x)$ and $a \leq x \leq b$ then:

Step 1: Solve $f^{\prime}(x)=0$

Step 2:

a. Plug the critical values into the original function.
b. Plug the endpoints into the original function.
At the end of step 2:
The biggest output is the global max.
The smallest output is the global min.

Example (same function from entry task):
On the interval $-2 \leq x \leq 10$, find the global max and min of

$$
f(x)=x^{3}-\frac{9}{2} x^{2}-12 x+10
$$

Example (from HW 10.3/10):

The total revenue (in thousand dollars) for selling q thousand Framits is given by

$$
T R(q)=\frac{1}{6} q^{4}-\frac{31}{6} q^{3}+55 q^{2}+200 q
$$

Part (c) Find the global max and global min of marginal revenue over the interval $\mathrm{q}=0$ to $\mathrm{q}=12$.

Example: (like the last problem in HW)
Given $g(x)=\frac{1}{4} x^{2}-4 x+25$ and

$$
S(x)=\frac{g(x)}{x}
$$

If x is between 1 and 20 , what is the smallest possible value of $\mathrm{S}(\mathrm{x})$?

Example: (like problems 5-9 of HW)

Given the monthly average cost and price for producing and selling q items:

$$
\begin{aligned}
& A C(q)=\frac{36000}{q}+100+q \\
& \quad p=1700
\end{aligned}
$$

If production is limited to 400 items per month, what quantity maximizes profit?

